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Several step-by-step methods for the numerical solution of coupled differential 
equations are given and compared under realistic circumstances. A variant of the 
Numerov method is found to be the most efficient. A novel method that consists of 
approximating the solutions by sets of Airy functions is investigated. 

1. INTRODUCTION 

Many problems in theoretical physics can be reduced to the solution of coupled 
differential equations. Within the last five years direct numerical integration of 
small sets of coupled equations has become practical on the available electronic 
computers [l-3]. The solution of large sets remains a time-consuming, expensive, 
and difficult operation, and it is of considerable interest to find the most efficient 
method. Solutions are often not required to very high accuracy, and it is possible 
to design methods that work very quickly for low accuracy although they may lose 
their advantages for higher accuracy [4, 51. 

In this paper we assess several step-by-step methods based on well-known 
formulas and their comparison with the new method introduced by Gordon [4]. In 
Section 2 we stress some of the features of the numerical solution of a single 
second-order linear differential equation that we shall require for the extension, 
in Section 3, to a set of such equations. Section 4 compares the method of Gordon 
[4] with one of the methods of Section 3, and concluding remarks are made in 
Section 5. 

2. SINGLE EQUATION 

Several authors [6, 71 have noted that for the step-by-step integration of the 
single-channel radial SchrSdinger equation, 
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the method of Numerov [8] is superior to any other that has been suggested. This 
is true if k2 < 0 giving a closed channel or eigenvalue problem or if k2 > 0 giving 
an open channel. The Numerov algorithm applies to a second-order linear differen- 
tial equation with the first derivative absent, i.e., 

Y” + fv = g, 

where f and g are functions of the independent variable. We may write 

(1 +A wi+l)Yn+l - (2 -g ef+n + (1 +A hyn-l)Y.-1 

= A hYgn+, + l%, + hd 

where h is the interval and the subscript 12 refers to the value of the function at the 
n-th mesh point. The truncation error is l/240 Py, , which is the smallest error 
known for three-point methods. This method is also very stable although it can be 
shown that, for the equation 

y” + k2y = 0, 

Numerov’s method suffers from instability if the interval h is chosen such that 
k2h2 > 6 [2, 61. However, this condition is usually satisfied if the truncation error 
is made small enough and hence, for all practical purposes, it may be ignored. 

Two disadvantages that are inherent in Numerov’s method are the requirements 
of special procedures to (a) start the integration and (b) change the interval. Both 
these disadvantages can be readily overcome in the case of Eq. (1). Typical 
boundary conditions for this equation are, for k2 > 0, 

y(r) = 0 at I = 0, 

y(r) - sin(kv + 7) as r-+ co, 

where 71 is the phase shift. Since Eq. (1) is linear and homogeneous, any solution 
with the correct behavior at the origin will be a multiple of any other solution with 
the same initial condition. Thus the second point in the solution may be chosen 
completely arbitrarily and the overall normalization determined by matching to 
the required form in the asymptotic region. 

In many problems, the function V(r) in Eq. (1) is a rapidly varying function for 
small r, gradually becoming smoother and finally tending to zero for large r. To 
integrate efficiently using such a function requires a steady increase in interval size. 
These increase can effectively be chosen to be multiples of the previous interval and, 
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in this case, there is no difficulty in increasing the interval within the Numerov 
algorithm. 

From a programming point of view the number of arithmetic operations per 
step can be reduced by means of the substitution 

(3) 

Equation (2) then becomes 

Y n+1 = 2yn + h2(gn -fnYn) - yn-1. (4) 

Admittedly, the mechanism for changing the interval is now more complicated 
since the Y, are functions of the interval h, but as this routine is used very seldom 
compared with the total number of steps required, the overall effect is an increase 
in efficiency. This form is particularly amenable for extension to a set of coupled 
radial Schriidinger equations. 

3. COUPLED EQUATIONS 

The set of coupled differential equations may be written 

(5) 
k#:i 

for 1 < i < N, 1 < y < N. 
We restrict attention to the case in which all channels are open so that the bound- 

ary conditions are 

yij = 0 at r = 0, (6) 

yii - kirjli(kir) aij + [%)l” Rijkirnl,(kir), (7) 

wherej,(x) and nl(x) are the spherical Bessel and Neumann functions, respectively. 
If the matrix elements Vii have no singularities of order two or higher at the 

origin, then for small R the solutions of (5) that satisfy (6) are given by 

where OL is a matrix of constants. The solutions thus obtained will not, in general, 
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satisfy the asymptotic boundary conditions (7). Thus N linearly independent solu- 
tions of (5) must be found and a suitable linear combination of them matched 
to the correct asymptotic form. 

The criterion for linearly independent solutions of this equation is that the phase 
shifts must themselves be markedly different and independent as noted by 
Buckingham [9]. We make the assumption that if the rows of a: are linearly inde- 
pendent then the respective asymptotic forms will also be linearly independent. 
Thus the solutions yii may be expanded as 

N 

Yij = c WikCkj > 
k=l 

or 
y = w * c. 

The solutions y may be matched to the boundary conditions at two values of r 
large enough so that the terms Vii are negligible. Then, defining a matrix R’ and 
diagonal matrices M”, Nr by 

Rij = (+)“” Rij, 
3 

Ni’j = kirnl,(kir) * Sii , 

the asymptotic condition (7) may be written 

Following Barnes, Lane, and Lin [l], and writing 

w=M*A+N*B, 

we obtain the relations 

R’ = B . A-1, 

which lead directly to the formation of the R matrix. 
Eq. (5) may be rewritten in matrix form as 

y” + Fe y = 0, 
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where 
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and Vii-fOasr-+ co. 
The Numerov formula (2) immediately generalizes to 

Y n+l = (I + & h2F,,,)-1 I(21 - ; h2Fn) Y, - (I + & h2F,,) Y,-I/, (10) 

where Z is a unit matrix. 
Using matrices 0 and 01 as starting conditions, we may integrate step by step into 

the asymptotic region and match to the boundary conditions at two points. Note 
that in this form each step requires a matrix inversion. This is the method used by 
Barnes, Lane, and Lin [l] and Smith, Henry, and Burke [IO]. Now the matrix that 
is inverted at each step, 

I + ; h2Fn+, > 

is strongly diagonally dominant, save possibly for small r, and tends to a diagonal 
matrix as r increases. This suggests that an iterative method would converge very 
rapidly and Allison [2] has proposed such a method based on the extension of 
Eq. (4) to the set of Eqs. (5). Eq. (4) immediately generalizes to 

yi,n+1 = 2L + Wgi,n -hf;:.n~i.n> - Yi,n-1, (11) 

where 

Yi.n = 
yi., + l/12 h2gi,n 

1 + l/12 W&z 
for 1 < i d IV, 

and, in the notation of Eq. (5), 

fi,, = (k,2 - zi(zirz ‘1 - vii) , 
n 

(12) 

(14) 

A great advantage of using the equations in this form is that Yi,,+I is independent 
of the coupling between the equations and can be found immediately from Eq. (11). 
The coupling only enters through the term gi,,+I in Eq. (12). 
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Eqs. (12) and (14) may be rewritten 

y&=i’ = yi.n+1 + l/12 &“’ z.n+1 

1 + l/12 h2h,, 
and 
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(15) 

(16) 

to define an iterative scheme that converges to the solution. In practice very few 
iterations are required, and in the asymptotic region this method settles down very 
quickly, depending on the value of the convergence parameter, to an estimation 
by Eq. (15) and a single correction by use of Eq. (16). The integration over the 
entire range is repeated N times, corresponding to N different columns of the matrix 
01 and the resultant solution matrices used in the matching process. 

As a result of the extra work required to handle the coupling it is not clear that 
Numerov’s method is the most efficient for the set of equations defined by (5). 

Lester [l I] has suggested the use of De Vogelaere’s method, a hybrid method for 
solving a second-order equation 

in which the first derivative is absent. Generalizing to a set of such equations, 

~1 = f(r, y1 ,..., Y,>, 1 <i<N, (17) 

De Vogelaere’s algorithm becomes 

~a/2 = ~3.0 + ; b4.o + 2 (45.0 -L1,2), 

yi.1 = yi,o + Mo + ; CL.0 + X.1,2), 

Yk = A0 + i (ho + %1~2 +L>, 

Y(,, = ydr + sh>, 

.L = f(r + 4 Y,,, 9...9 YN,J, 

and h is the interval. The neglected terms are of order ha, h5, and h6, respectively, 
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and the method is comparable in accuracy with the fourth-order Runge-Kutta 
process. To start the integration it is necessary to know not only yi,, , yi,, but also 
fi,-1,2 . However, this quantity is readily obtained from Y~,-~,~ , given to sufficient 
accuracy by 

Y&-l/Z = Yi.0 - 3hyl.o + Wfi.o . 

The N equations given in (17) may then be integrated into the asymptotic region 
N times, each time corresponding to a different column of the matrix 01 that, in 
this case, may be regarded as a linearly independent set of initial derivatives. 
Usually a unit matrix is a satisfactory choice for these nonsingular starting 
matrices. 

These then are the three methods we shall compare using an example from 
theoretical physics. To summarize: 

Method 1. The matrix Numerov method, in which we use matrices 0 and 01 
to start the step-by-step integration out to the matching points. The integration 
over the entire range is performed only once but matrix operations are used 
throughout. 

Method 2. De Vogelaere’s method, where the initial conditions are specified 
by a column of zeros and successive columns of a nonsingular matrix of initial 
derivatives. The integration over the range of r must be performed N times for a 
set of N coupled equations. 

Method 3. The iterative Numerov method, in which a column of zeros and 
successive columns of 01 are used to start the integration. Again the integration is 
repeated N times over the entire range. 

It is difficult to establish precise criteria for the comparison of the speed and 
efficiency of different numerical methods. Comparison between different programs 
run on different computers is at best a rough estimate and at worst misleading. 
Perhaps the best that can be done to compare different methods is to use procedures 
written by the same programmer in the same language and run on the same com- 
puter under the same operating system and with the same compiler. 

Rotational excitation of a diatomic molecule by neutral particle impact is one 
problem in theoretical physics that may be described in terms of coupled differen- 
tial equations. Using the notation of Arthurs and Dalgarno [12], denoting the 
entrance channel by the quantum numbers (j, I), the exit channels by (j’, Z’), and 
the total angular momentum by J = j + I = j’ + I’, we obtain 

l’(1’ + 1) 
r2 ] y;+(r) = $ c c (j’l’; J j V 1 j”l”; J) y;+(r), 

3fl 1” 



COUPLED DIFFERENTIAL EQUATIONS 385 

where 

kf,j = $ [E + 5 {j(j + 1) -j’(j’ + I)}], 

E is the kinetic energy of the incident particle in the center-of-mass system, I is 
the moment of inertia of the rotator, and p is the reduced mass of the system. 

The potential V may be expanded as 

where $T~ is a unit vector parallel to the wave vector k,jj . 
The coupling matrix element can then be written 

(j’l’; J 1 V j j”l”; J) = 6,~iG&~,-Vo(r) +fi(j’l’,j”l”; J) Va(r), 

where thef, coefficients can be evaluated from formulas given by Bernstein et al. 
[13]. The boundary conditions are 

yf$(r) = 0 at r = 0, 

y?;/(r) w Sjj’ . a,,/ exp [-i (kjjr - i lr)] 

(18) 

- (-$)“” F(jl; j’ll)exp [ +i (kjfjr - i l’n)], 
3 

where the scattering 5’ matrix is related to the R matrix of Eq. (5) by the relation 

S = (I + iR)(Z - iR)-‘. (20) 

A program has been written to solve this problem and has been used to calculate 
cross sections for rotational excitation of molecular hydrogen by impact of various 
heavy particles [2, 141. This program has a subroutine that deals exclusively with 
the step-by-step integration from the initial value to the matching points. Origi- 
nally method 3 was used, but recently the author has programmed method 1 to fit 
this structure and also, using the routine given by Lester [15], modified the program 
to accept method 2. 

As noted by several authors [2,3], a good check on the calculation is furnished 
by inspection of the symmetry of the calculated R matrix, which, in turn, guarantees 
the unitarity of the S matrix. Note that this check gives no information about the 
convergence of the R matrix but shows only that numerical errors are not swamping 
the required solutions. 
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Several S matrices have already appeared in the literature [16, 171 and, for the 
sake of consistency, we choose one of these as the example on which we shall test 
the above three methods. The parameters are 

and 

2y = 10000 fj2 .’ + = 2.351, E = 1.1, 

V,(r) = r-12 - 2r-“, 

V,(r) = 0.2283 V,(r). 

We take J = 6 and consider excitation of the rotator from the j = 0 state to 
levels up to j’ = 2,4, and 6 giving rise to sets of four, nine, and sixteen coupled 
equations, respectively. Following the procedure developed by Bernstein [18] we 
assumed the potential infinite for values of Y less than some r, . The wavefunctions 
will then be zero in this region and effectively the boundary condition (18) may be 
modified to 

Using a single channel phase shift program with the same potential and param- 
eters corresponding to the smallest wavenumber we found that successive values 
of the phase shift had converged to within 0.0001 around r = 6.2. We make the 
assumption that, for the coupled equations, the R matrix elements will have con- 
verged by the same radial distance, a situation that has been verified in practice. 

The range of integration was chosen to be 

r. 0.75 
100 steps at 0.007 0.7 
350 steps at 0.014 4.9 

Final matching point 6.35. 

The times, in seconds, required by the three methods to calculate the square of 
the modulus of the S matrix for sets of four, nine, and sixteen coupled equations 
are shown in Table I. The iterative Numerov method is much the fastest, a factor 
of two over the matrix Numerov method, and slightly less over De Vogelaere’s 
method. This factor did not vary significantly with the number of equations solved. 

This increase in speed for the iterative Numerov method is due entirely to the 
ability to vary the size of the convergence parameter E, consistent with obtaining 
results correct to some predetermined figure. In fact, picking E = lo-14, the limit 
of the precision of the CDC 6400 computer that was used for these calculations, 
the iterative Numerov method took longer than the other two. Even when E was 
increased to a value of 10-2, the elements of the matrix 1 S I2 had varied by at most 
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TABLE I 

Time, in Seconds, to Calculate I S I* 

N 

Method 4 9 16 

1. Matrix Numerov 5 38 186 
2. De Vogelaere 5 35 162 
3. Iterative Numerov 3 20 94 

TABLE II 

j S I* Calculated by Method 3 for N = 9 with c = IOee 

Values of j and I 

. I  
J 1’ 0 6 2 4 2 6 2 8 4 2 4 4 4 6 4 8 4 10 

0 6 0.4353 0.1538 0.1244 0.2045 0.0153 0.0122 0.0128 0.0151 0.0266 
2 4 0.1538 0.3768 0.0974 0.0301 0.2317 0.0823 0.0189 0.0071 0.0019 
2 6 0.1244 0.0974 0.4737 0.0561 0.0156 0.0208 0.0910 0.1103 0.0107 
2 8 0.2044 0.0300 0.0561 0.3780 0.0014 0.0012 0.0030 0.0241 0.3017 
4 2 0.0153 0.2317 0.0156 0.0014 0.6513 0.0759 0.0080 0.0007 0.0001 
4 4 0.0122 0.0823 0.0208 0.0012 0.0759 0.7001 0.1017 0.0058 0.0001 
4 6 0.0128 0.0189 0.0910 0.0030 0.0080 0.1016 0.7039 0.0602 0.0006 
4 8 0.0152 0.0071 0.1102 0.0241 0.0007 0.0058 0.0602 0.7668 0.0099 
4 10 0.0266 0.0019 0.0107 0.3016 0.0001 0.0001 0.0006 0.0099 0.6485 

one in the fourth decimal place. In the comparisons that follow a value of 1O-2 
was chosen for E. 

The symmetry of the square of the modulus of the S matrix is best for the matrix 
Numerov method where, for this example, the maximum difference between corre- 
sponding matrix elements is two in the sixth decimal place. For De Vogelaere’s 
method and the iterative Numerov method the symmetry is still good, the discrep- 
ancy being one in the fourth decimal place. The matrix I S I2 for N = 9 calculated 
by the iterative Numerov method is shown in Table II. 

4. GORDON’S METHOD 

Gordon [4] has developed a novel method based on approximate fits to the 
potential function over various sections of the range and their subsequent analy- 
tical solution. He has implemented this method using linear fits to the potential 

5811613-4 
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curve and efficient routines for the calculation of the resultant Airy functions. in 
many problems the potential functions are not very accurately known and, in such 
cases, a linear fit over fairly large regions will give a good representation. Gordon’s 
program was run on an IBM 360-65 and a large increase of speed over the only 
other published timings was claimed [ 171. This program has been adapted to run 
on the CDC 6400. 

The great advantage of Gordon’s method over the step-by-step methods is that 
once an approximate fit has been established for a particular effective potential 
characterised by a fixed value of the total angular momentum J and a calculation 
for some energy value performed, further calculations for different energies and 
the same value of J can be repeated very quickly. Repeated calculations were found 
to be a factor of five faster in all cases. 

Thus, in the calculation of cross sections for rotational excitation of a molecule 
by neutral particle impact, a whole set of energies corresponding to a single value 
of J could be used, the resultant S matrices stored on a magnetic tape or disk, 
and the calculation repeated for consecutive values of J. At the end of the calculation 
it is a matter of housekeeping to read the S matrices off the storage device, sum over 
the various channels, and print out the required cross sections. 

In Gordon’s program there are several small convergence parameters, suitable 
values of which are given in terms of a variable labelled TOLLHI, the largest 
allowed perturbation correction. These values were varied to study the convergence 
of the elements of the matrix 1 S 12. It was found to be very rapid for the off-diagonal 
elements agreeing to one in the third decimal place with the matrix elements 
calculated by the step-by-step methods. The convergence of the diagonal elements 
was slow and appeared to convergence to values that differed by up to three in the 
third decimal place. The results of the timings for the same calculation as before 
are shown in Table III. Note the large increase in speed for the repeated calculation 
over the first one. 

These comparisons assume that the calculation of the potential energy curve for 
a particular value of the internuclear separation is not a significant proportion 

TABLE III 

Gordon’s Methods for N = 9 

TOLLHI 

Time for Time for 
first calculation repeated calculation 

(set) (se4 

3 x 10-s 14.1 2.6 
1 x 10-s 19.4 3.4 
5 x 10-a 27.0 4.5 
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TABLE IV 

Time, in Seconds, to Calculate I S la 

Iterative Numerov, fine interval 2.9 20.4 94.3 
coarse intervala 1.4 10.4 48.8 

Gordon, fkst 3.3 19.4 65.8 
calculation 

TOLLHI = 1O-3 
repeated 0.7 3.4 11.5 

calculation 

“The coarse integration interval that was used for the iterative Numerov method consisted 
of 60 steps of interval 0.015 followed by 150 steps of interval 0.03. A value of 0.75 was used for 
Y,, and the final matching took place at 5.85. 

TABLE V 

Comparison of 1 S IS Between Iterative Numerov Method with Coarse Interval 
and Gordon’s Method with TOLLHI = 1O-S a 

Values of j and I 

., I 1’ 0 6 2 4 2 6 2 8 4 2 4 4 4 6 4 8 4 10 

0 6 

2 4 

2 6 

2 8 

4 2 

4 4 

4 6 

4 8 

4 10 

0.435 0.153 0.125 0.204 0.015 0.012 0.013 0.015 0.027 
0.438 0.154 0.124 0.203 0.015 0.012 0.013 0.015 0.026 
0.154 0.376 0.098 0.030 0.232 0.082 0.019 0.007 0.002 
0.154 0.381 0.096 0.029 0.230 0.082 0.019 0.007 0.002 
0.125 0.098 0.472 0.056 0.016 0.021 0.091 0.110 0.011 
0.124 0.096 0.477 0.056 0.015 0.021 0.091 0.110 0.011 
0.205 0.030 0.057 0.376 0.001 0.001 0.003 0.024 0.303 
0.203 0.029 0.056 0.379 0.001 0.001 0.003 0.024 0.303 
0.015 0.232 0.016 0.001 0.651 0.076 0.008 0.001 0.000 
0.015 0.230 0.015 0.001 0.654 0.076 0.008 0.001 0.000 
0.012 0.082 0.021 0.001 0.076 0.701 0.101 0.006 o.ooo 
0.012 0.082 0.021 0.001 0.076 0.701 0.102 0.006 0.000 
0.013 0.019 0.091 0.003 0.008 0.101 0.705 0.060 0.001 
0.013 0.019 0.091 0.003 0.008 0.102 0.704 0.060 0.001 
0.015 0.007 0.110 0.024 0.001 0.006 0.060 0.767 0.010 
0.015 0.007 0.110 0.024 0.001 0.006 0.060 0.767 0.010 
0.027 0.002 0.011 0.302 0.000 0.000 0.001 0.010 0.647 
0.026 0.002 0.011 0.302 0.000 0.000 0.001 0.010 0.648 

n Upper entries Numerov, lower entries Gordon. 
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of the time required to calculate the S matrix. If this were not the case, then a 
method requiring fewer mesh points would be favored. 

It is only fair to point out that most users of the conventional step-by-step 
methods have a tendency to overcompute. For example, for the integration of an 
oscillatory function a well-known criterion for the choice of step size is approxi- 
mately one tenth of a wavelength. In fact, this criterion corresponds to fairly 
accurate computation and if less accuracy is required it can be drastically reduced. 
The usual equations corresponding to N = 9 have been solved by the iterative 
Numerov method using a very coarse interval division that corresponds to the use 
of about three or four intervals per wavelength in the region in which the solutions 
are oscillatory. The results are shown in Table IV, together with the corresponding 
results from Gordon’s method using a value of TOLLHI = 10-3. The time 
required is less than that required for a first calculation using Gordon’s method, but 
slower than the repeated calculation by a factor that increases with N. The cal- 
culated 1 S I2 matrices for N = 9, from the iterative Numerov with coarse interval 
and from Gordon’s result for TOLLHI = 10-3, are given in Table V. 

It should be stressed here that determination of the accuracy of the S matrix 
obtained from a step-by-step integration involves different choices of integration 
mesh, and these may have to be adjusted for different energies. 

5. CONCLUSION 

If one is faced with the problem of solving large sets of coupled second-order 
linear differential equations for a set of energies or associated parameters using 
potential functions that are known only to a few per cent accuracy, then full 
consideration should be given to the recent method of Gordon [4]. On the other 
hand, if the potential functions are known more accurately and higher precision 
is required, or if it is not convenient to repeat the calculation immediately for 
different energies, then the established step-by-step methods and, in particular, 
the iterative Numerov variant are still very satisfactory and of comparable 
speed. 
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